Stabilization of a pendulum in dynamic boundary feedback with a memory type heat equation
نویسندگان
چکیده
This paper addresses a dynamic feedback stabilization of an interconnected pendulum system with a memory type heat equation, where the kernel memory is an exponential polynomial. By introducing some new variables, the time-variant system is transformed into a time-invariant one. The detailed spectral analysis is presented. Remarkably, the resolvent of the closed-loop system operator is not compact anymore. The residual spectrum is shown to be empty and the continuous spectrum consists of finite isolated points. Furthermore, it is shown that there is a sequence of generalized eigenfunctions, which forms a Riesz basis for the Hilbert state space. This deduces the spectrum-determined growth condition for the C0-semigroup, and the exponential stability is then followed. Finally, some numerical simulations are presented to show the effectiveness of this feedback control design.
منابع مشابه
MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL
This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...
متن کاملBoundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer
This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...
متن کاملDynamic Stabilization of the Inverted Pendulum
The inverted pendulum is a canonical problem in both Nonlinear Dynamics and Control Theory. In this article, the phenomenon of dynamic stabilization of the vertically driven inverted pendulum is investigated experimentally and numerically. We resolve the first stabilizing boundary in driving parameter space, as well as investigate the effects of frictional damping on the dynamics of the pendulu...
متن کاملUsing the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملOutput-feedback Stabilization and Control Optimization for Parabolic Equations with Neumann Boundary Control
Both of feedback stabilization and optimal control problems are analyzed for a parabolic partial differential equation with Neumann boundary control. This PDE serves as a model of heat exchangers in a conducting rod. First, we explicitly construct an output-feedback operator which exponentially stabilizes the abstract control system representing the model. Second, we derive a controller which, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IMA J. Math. Control & Information
دوره 34 شماره
صفحات -
تاریخ انتشار 2017